skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sen, Rathijit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although dominant for tabular data, ML libraries that train tree models over normalized databases (e.g., LightGBM, XGBoost) require the data to be denormalized as a single table, materialized, and exported. This process is not scalable, slow, and poses security risks. In-DB ML aims to train models within DBMSes to avoid data movement and provide data governance. Rather than modify a DBMS to support In-DB ML, is it possible to offer competitive tree training performance to specialized ML libraries...with only SQL? We present JoinBoost, a Python library that rewrites tree training algorithms over normalized databases into pure SQL. It is portable to any DBMS, offers performance competitive with specialized ML libraries, and scales with the underlying DBMS capabilities. JoinBoost extends prior work from both algorithmic and systems perspectives. Algorithmically, we support factorized gradient boosting, by updating theYvariable to the residual in thenon-materialized join result.Although this view update problem is generally ambiguous, we identifyaddition-to-multiplication preserving, the key property of variance semi-ring to supportrmsethe most widely used criterion. System-wise, we identify residual updates as a performance bottleneck. Such overhead can be natively minimized on columnar DBMSes by creating a new column of residual values and adding it as a projection. We validate this with two implementations on DuckDB, with no or minimal modifications to its internals for portability. Our experiment shows that JoinBoost is 3× (1.1×) faster for random forests (gradient boosting) compared to LightGBM, and over an order of magnitude faster than state-of-the-art In-DB ML systems. Further, JoinBoost scales well beyond LightGBM in terms of the # features, DB size (TPC-DS SF=1000), and join graph complexity (galaxy schemas). 
    more » « less
  2. null (Ed.)
    We introduce non-hierarchical caching (NHC), a novel approach to caching in modern storage hierarchies. NHC improves performance as compared to classic caching by redirecting excess load to devices lower in the hierarchy when it is advantageous to do so. NHC dynamically adjusts allocation and access decisions, thus maximizing performance (e.g., high throughput, low 99%-ile latency). We implement NHC in Orthus-CAS (a block-layer caching kernel module) and Orthus-KV (a user-level caching layer for a key-value store). We show the efficacy of NHC via a thorough empirical study: Orthus-KV and Orthus-CAS offer significantly better performance (by up to 2x) than classic caching on various modern hierarchies, under a range of realistic workloads. 
    more » « less